
This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Energy Levels and Band Intensities of Neodymium Organic Acid Complexes

A. Suresh Kumar^a; S. Buddhudu^b

^a University Services and Instrumentation Centre. S.V. University, Tirupati, India ^b Department of Physics, University of Hull, Hull, England

To cite this Article Kumar, A. Suresh and Buddhudu, S.(1988) 'Energy Levels and Band Intensities of Neodymium Organic Acid Complexes', Physics and Chemistry of Liquids, 18: 4, 321 - 326To link to this Article: DOI: 10.1080/00319108808078607

URL: http://dx.doi.org/10.1080/00319108808078607

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doese should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1988, Vol. 18, pp. 321-326 Reprints available directly from the publisher Photocopying permitted by license only © 1988 Gordon and Breach Science Publishers Inc. Printed in the United Kingdom

Energy Levels and Band Intensities of Neodymium Organic Acid Complexes

A. SURESH KUMAR

University Services and Instrumentation Centre, S.V. University, Tirupati, 517 502, India

and

S. BUDDHUDU

Department of Physics, University of Hull, Hull HU6 7RX, England.

(Received 16 October 1987)

The optical absorption spectra of Nd³⁺ ion in glutamic, L-aspartic and maleic acids in UV-VIS and NIR regions have been recorded. From the spectral data thus obtained, various spectroscopic parameters are evaluated. The radiative lifetimes (τ_R) and branching ratios (β) for the excited states of Nd³⁺ ion in three acids have been computed. The relationship between the environment sensitive Judd-Ofelt parameter (Ω_2) and the intensities of hypersensitive level (${}^4G_{5/2}$) is in good coincidence following the Judd-Ofelt theory.

Key Words: Branching ratio, radiative lifetime.

INTRODUCTION

Spectral studies of Nd^{3+} ion in mineral,¹⁻³ organic⁴⁻⁸ and laser⁹⁻¹⁰ liquids are available already in literature. In the present paper, we report the environmental effect on Nd^{3+} ion in three organic acids.

EXPERIMENTAL

One mol % of NdCl₃ is mixed in to the saturated solutions of glutamic, L-aspartic and maleic acids. The absorption spectra have been recorded

in UV-VIS and NIR regions on Perkin-Elmer 551 and Carl-Zeiss Specord-61 spectrophotometers. The refractive indices of the three organic complexes were measured using PZO Warszawava 3275 refractometer. The intensities of the absorption bands are measured using area method following the expression.¹¹

$$f = 4.32 \times 10^{-9} \int \varepsilon(v) dv$$

where ε is molar absorptivity and ν is the energy of the transition in wavenumber.

RESULTS AND DISCUSSION

Electronic Energy Levels

From the recorded spectra the energy levels have been assigned appropriately by following Dieke.¹² Using the partial derivatives¹³ and adopting the least square fit analysis, the energy levels are fitted theoretically and are given in Table 1. The rms deviation is found to be reasonable. The Racah (E^k), spin-orbit (ξ_{4f}) and configurational interaction (α) parameters have been evaluated⁸ and are given in Table 2.

Terms from ⁴ I _{9/2}	Nd ³⁺						
	Glutamic acid		L-aspartic acid		Maleic acid		
	Eexpt	Ecale	Eexpt	Ecalc	E _{expi}	Ecalc	
⁴ F _{3/2}	11652	11531	11625	11500	11638	11621	
${}^{4}\mathrm{F}_{5/2}^{5/2}$	12687	12672	12559	12440	12639	12625	
4F	13620	13712	13510	13564	13583	13684	
⁴ F _{9/2}	14887	14877	14867	14913	14877	14941	
⁴ H _{11/2}	16125	16195	16125	16056			
⁴ G _{5/2}	17508	17433	17296	17165	17478	17459	
⁴ G _{7/2}	19337	19311	19225	19102	19374	19362	
⁴ G _{9/2}	19718	19766	19526	19577	19680	19771	
${}^{4}G_{11/2}^{9/2}$	21924	21847	21639	21690	21924	21849	
${}^{2}\mathbf{P}_{1/2}$	23578	23540	23468	23439	23523	23511	
${}^{4}D_{5/2}$	28977	29056	28810	28676	29061	29093	
rms deviation	±9	1.70	± 12	26.31	<u>±</u> 6	3.59	

Table 1 Experimental and calculated energy levels (in cm^{-1}) of Nd³⁺ acid complexes.

Parameter	Nd ³⁺				
	Glutamic acid	L-aspartic acid	Maleic acid		
E^{1} (cm ⁻¹)	4882.785	4845.168	4897.691		
$E^2 (cm^{-1})$	25.545	26.047	25.548		
E^{3} (cm ⁻¹)	498.450	488.473	500.862		
$\xi_{4f} (cm^{-1})$	892.096	913.980	887.269		
α (cm ⁻¹)	1.896	0.640	4.021		
$\Omega_2 \times 10^{20} \text{ cm}^2$	3.627	6.049	2.437		
$\Omega_4 \times 10^{20} \text{ cm}^2$	2.169	0.109	3.466		
$\Omega_6 \times 10^{20} \text{ cm}^2$	12.046	14.418	8.623		
n	1.3410	1.3450	1.3485		

 Table 2 Spectroscopic parameters of Nd³⁺ organic complexes.

Intensity Parameters

Intensities of the absorption levels of Nd³⁺ ion in three acids have been measured using area method. The theoretically evaluated¹¹ intensities of the levels are listed in Table 3. A reasonable rms deviation is observed. Following Ramesh Babu *et al.*,⁸ Judd-Ofelt intensity parameters have been derived and are presented in Table 2. The trend in variation of Ω_{λ} parameters of Nd³⁺ ion in three acids are as follows:

- Ω_2 : L-aspartic acid > Glutamic acid > Maleic acid
- Ω_4 : Maleic acid > Glutamic acid > L-aspartic acid
- Ω_6 : L-aspartic acid > Glutamic acid > Maleic acid

Terms from ⁴ I _{9/2}	Nd ³⁺					
	Glutamic acid		L-aspartic acid		Maleic acid	
	f_{expt} (×10 ⁶)	f_{calc} (×10 ⁶)	f_{expt} (×10 ⁶)	f_{calc} ($\times 10^6$)	f_{expt} (×10 ⁶)	f_{calc} ($ imes 10^6$)
⁴ F _{3/2}	3.997	4.603	0.600	0.965	0.601	0.965
⁴ F _{3/2} ⁴ F _{5/2} ⁴ F _{7/2}	12.702	10.773	4.398	5.389	4.396	5.389
${}^{4}\mathrm{F}_{7/2}^{3/2}$	11.543	15.029	3.827	3.148	3.827	3.148
⁴ F _{9/2} ⁴ G _{5/2} ⁴ D _{5/2}	1.544	1.120	_		_	_
4G5/2	25.038	25.036	5.609	6.588	5.609	6.588
⁴ D _{5/2}	3.309	3.072	_	_	0.645	0.945
rms	+2	.339	±2	.407	±2	.797
deviation						

Table 3 Experimental and calculated intensities for the energy levels of Nd^{3+} acid complexes.

	Nd ³⁺			
	Glutamic acid	L-aspartic acid	Maleic acid	
$\Omega_2 \times 10^{20} \text{ cm}^2$	3.627	6.049	2.437	
$ \int_{expt}^{2} (\times 10^{6}) $	10.712	13.886	9.169	

Table 4 Intensities of hypersensitive level (${}^{4}G_{5/2}$) and Judd-Ofelt intensity parameter (Ω_{2}) of Nd³⁺ organic acid complexes.

It is also noted that the environment sensitive $(\Omega_2)^{14}$ and vibronic dependant $(\Omega_6)^{15}$ parameters exhibit maximum and minimum values both in L-aspartic and Maleic acids.

Hypersensitive Transitions

Transitions which are sensitive to the host environment are called the hypersensitive transitions. They obey the following selection rule.

$$\Delta J \leq 2$$
, $\Delta L \leq 2$ and $\Delta S \leq 0$

For Nd^{3+} ion ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2}$ is the hypersensitive transition.¹⁶ Table 4 represents the Ω_{2} values and intensities of ${}^{4}G_{5/2}$ level of Nd^{3+} ion in three acids. From this Table it is evident that Ω_{2} increases with the increase in intensity of ${}^{4}G_{5/2}$ level verifying the validity of the Judd-Ofelt theory.¹⁵

Radiative Lifetimes and Branching Ratios

The radiative lifetimes for the excited states ${}^{4}F_{3/2, 5/2, 9/2}$, ${}^{2}H_{11/2}$, ${}^{4}G_{5/2, 7/2, 9/2}$ of Nd³⁺ ion in three acids have been computed⁸ and are presented in Table 5. The variational trend of the energy levels of Nd³⁺ ion in three acids are stated as follows:

$$\begin{array}{l} \text{Nd}^{3\,+} \ (\text{Glutamic acid}) \\ \end{array} \\ \stackrel{?}{:} {}^{2}\text{H}_{11/2} > {}^{4}\text{F}_{3/2} > {}^{4}\text{F}_{9/2} > {}^{4}\text{F}_{5/2} > {}^{4}\text{G}_{9/2} \\ \text{Nd}^{3\,+} \ (\text{Maleic acid}) \\ \stackrel{?}{\int} > {}^{4}\text{G}_{7/2} > {}^{4}\text{G}_{5/2} \\ \text{Nd}^{3\,+} \ (\text{L-aspartic acid}) \\ \stackrel{?}{:} {}^{2}\text{H}_{11/2} > {}^{4}\text{F}_{3/2} > {}^{4}\text{F}_{5/2} > {}^{4}\text{F}_{9/2} > {}^{4}\text{G}_{7/2} \\ > {}^{4}\text{G}_{9/2} > {}^{4}\text{G}_{5/2} \end{array}$$

It is noted that ${}^{2}H_{11/2}$ and ${}^{4}G_{5/2}$ excited states of Nd³⁺ ion yield maximum and minimum values for their lifetimes in all the three acid media.

Lasing potency defining parameter namely branching ratio¹⁴ and radiative lifetimes (τ_R) for ${}^4F_{3/2} \rightarrow {}^4I_J$ (J = 9/2, 11/2, 13/2) lasing lines

Level	Nd ³⁺				
	Glutamic acid	L-aspartic acid	Maleic acid		
$\begin{array}{r} {}^{4}F_{3/2} \\ {}^{4}F_{5/2} \\ {}^{4}F_{9/2} \\ {}^{2}H_{11/2} \\ {}^{4}G_{5/2} \\ {}^{4}G_{7/2} \\ {}^{4}G_{9/2} \end{array}$	333	316	392		
${}^{4}\mathrm{F}_{5/2}^{4/2}$	273	249	334		
${}^{4}F_{9/2}$	276	244	352		
$^{2}H_{11/2}$	4958	3833	5501		
⁴ G _{5/2}	132	106	138		
${}^{4}G_{7/2}^{3/2}$	155	225	153		
${}^{4}G_{9/2}$	195	143	183		

Table 5 Computed radiative lifetimes (τ_R) (in μ s) for the fluorescent levels of Nd³⁺ organic acid complexes.

Table 6 Radiative lifetimes (τ_R) (in μ s) and branching ratios (β) of lasing levels of Nd³⁺ organic acid complexes.

Transition	Nd ³⁺					
	Parameter	Glutamic acid	L-aspartic acid	Maleic acid		
$^{4}F_{3/2} \rightarrow ^{4}I_{13/2}$	$\tau_R(\mu s)$	2554	2116	3510		
5/2 15/2	ß	0.124	0.142	0.106		
${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$	$\tau_R(\mu s)$	479	415	622		
0,2 11,2	β	0.565	0.612	0.519		
${}^{4}\mathrm{F}_{3/2} \rightarrow {}^{4}\mathrm{I}_{9/2}$	τ_{R} (µs)	333	316	392		
5,2 5,2	βÎ	0.305	0.239	0.369		

are shown in Table 6. The variational trend of both β and τ_R of these three levels in three organic complexes are as shown below:

$$\tau_{R}: {}^{4}F_{3/2} \to {}^{4}I_{13/2} > {}^{4}F_{3/2} \to {}^{4}I_{11/2} > {}^{4}F_{3/2} \to {}^{4}I_{9/2}$$
$$\beta: {}^{4}F_{3/2} \to {}^{4}I_{11/2} > {}^{4}F_{3/2} \to {}^{4}I_{9/2} > {}^{4}F_{3/2} \to {}^{4}I_{13/2}$$

This situation explains that ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition exhibits maximum lasing potency (β) in all the three organic complexes studied.

Acknowledgement

The authors express their grateful thanks to Prof. S. V. J. Lakshman for his cooperation and necessary help in the present work.

References

- 1. N. S. Poluektov, Zh. Neorg. Khim, 27, 2232 (1982).
- 2. G. Liu, Geo. Mua. Xua., 4, 8 (1983).
- 3. C. Krishnamurthy and S. Buddhudu, Ind. J. Phys., 60, 1 (1986).
- 4. C. Gopinath, L. Ramamoorthy and S. Buddhudu, Mater. Lett., 4, 279 (1986).
- 5. N. S. Poluektove and M. A. Tishecheno, Khim. biol. Nauk, 12, 1107 (1980).
- 6. N. S. Poluektove and L. R. Kononenko, Koord. Khim., 3, 476 (1977).
- 7. S. P. Tandon and P. P. Vaishnawa, Ind. J. Phys., 51, 4040 (1977).
- V. Ramesh Babu, C. Krishnamurthy, S. V. J. Lakshman and S. Buddhudu Proc. INSA, 51, 746 (1985).
- 9. A. Suresh Kumar and S. Buddhudu, Ind. J. Pure and Appl. Phys., 24, 90 (1986).
- S. Buddhudu, L. Ramamoorthy and C. Krishnamurthy, Mater. Sci. & Eng., 72, L31 (1985).
- W. T. Carnall, H. M. Crosswhite and H. Crosswhite, Energy Level Structure and Transition Probabilities of Trivalent Lanthanides in LaF₃, Argonne National Laboratory, Argonne, Illinois, U.S.A. (1978).
- G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, New York), (1968).
- A. Suresh Kumar, Ph.D. thesis, "Optical Studies of Rare Earth Ions in Certain Binary Glasses," S.V. University, Tirupati, India, (1987).
- R. Reisfeld and C. K. Jorgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, Berlin), (1977).
- 15. R. D. Peacock, Structure and Bonding, 22, 83 (1975).
- 16. C. K. Jorgensen and B. R. Judd, Mol. Phys., 8, 281 (1964).
- 17. A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin), 1981.